Intro to Transformers

Eliot Kim

June 27th 2025

Machine Learning Journal Club

Intro to Transformers

Eliot Kim

June 27th 2025
Machine Learning Journal Club

Q: How might strengths of the transformer architecture suit weather and climate modeling?

Motivation for transformers

Goal: Predict the most likely next term(s) given a sequence

Ex: Translation

Motivation for transformers

Goal: Predict the most likely next term(s) given a sequence

Previously, **Recurrent Neural Networks** (RNNs):

- Not parallelizable
- Exploding gradients for long sequences
- Difficult to store long-term context (even with LSTMs)
- Sequence length and computational cost are directly related!

Advantages of transformers

Goal: Predict the next term(s) given a sequence

Then, in 2017: "Attention is all you need"

Attention is all you need

A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, AN Gomez, ... Advances in neural information processing systems 30 186609

2017

Transformers, based on the **Attention** mechanism:

- + Look at whole sequence at once
- + Long-term context
- + Scalable
- + Parallelizable

Vaswani et al. 2017

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token in high-dimensional space

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token in high-dimensional space

Output Probabilities

Softmax

Linear

Add & Norm
Feed
Forward

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add <u>position encoding</u> to embedding of each token using sine and cosine functions

Output Probabilities

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

Encoder

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

Decoder

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

Attention: Update each embedding with relevant contextual information

Encoder

Decoder

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

Attention: Update each embedding with relevant contextual information

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$= \Delta \vec{E}$$

Layer Output = Norm($\vec{E} + \Delta \vec{E}$)

Encoder

Decoder

Output

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

Attention: Update each embedding with relevant contextual information

Encoder

Decoder

Output Probabilities

When enhancing the embedding of token <i>, how much attention should the model pay to token <j>?

Does the embedding of token <j> "attend" to the embedding of token <i>?

"If this word is relevant for updating the meaning of something else, what should be added to the embedding of something else?"

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

- 4) Attention: Update each embedding with relevant contextual information
 - a) Self-attention ✓
 - b) Masking: *Prevent attention map from using information later in the sequence*
 - c) Cross-attention
 - d) Multi-headed attention

Data Set-Up

- 1) (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

- 4) Attention: Update each embedding with relevant contextual information
 - a) Self-attention ✓
 - b) Masking: Prevent attention map from using information later in the sequence
 - c) Cross-attention: Create attention map between two different sequences (i.e. translation)
 - d) Multi-headed attention

Data Set-Up

- (<u>Tokenize</u> sequence)
- 2) Embed each token
- 3) Add position encoding for each token

Learning

- Attention: Update each embedding with relevant contextual information
 - a) Self-attention ✓
 - Masking: Prevent attention map from using information later in the sequence
 - Cross-attention: Create attention map between two different sequences (i.e. translation)

New

d) Multi-headed attention: Each head learns a different context-based update to the embedding

Output

Probabilities

Vision Transformers

Self-attention becomes very expensive for pixel-to-pixel, so... patching!

Dosovitskiy et al. 2021

Vision Transformers

Self-attention becomes very expensive for pixel-to-pixel, so... patching!

With sufficient dataset size, beats conventional CNN-based models

Dosovitskiy et al. 2021

Topics I didn't have time to dig into

- Training process
 - Pre-training
 - Fine-tuning
- Vision Transformer architectures
 - Shifted Window (Swin) → used in Aurora
- Disadvantages of transformers and open research areas
- Transformers for weather and climate modeling
 - ClimaX (Nguyen et al. 2023)
 - Stormer (Nguyen et al. 2024)
 - Aurora (Bodnar et al. 2025, Lehmann et al. 2025)

Sources

Attention Intro: https://www.youtube.com/watch?v=eMlx5fFNoYc

How LLMs store facts: https://www.youtube.com/watch?v=9-Jl0dxWQs8

Attention is All You Need Video: https://www.youtube.com/watch?v=iDulhoQ2pro

UW ECE 596 Course Notes

UW-Madison ML Prof's Blog: https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html